张健
姓名:张健
职称:教授、研究员、研究员级高级工程师
Email: 56071007@qq.com
学历及学术经历:
博士,硕士生导师,现任南通大学生命科学学院科研副院长,曾担任上海交大农科集团、汉枫集团(加拿大上市公司)高管。
先后入选江苏省第四期、第五期“333高层次人才培养工程”,江苏省第十二批“六大人才高峰”培养对象。市科技创新创业导师团成员,市第七届青年科技奖获得者,市第八届优秀科技工作者。兼任南通市观赏植物遗传育种重点实验室主任,中国林学会盐碱地分会理事,江苏省植物学会理事,南通市农学会副理事长等职,国内外多家知名期刊的特邀审稿人和国家重点研发计划答辩评审专家。
2010年以来主持国家自然科学基金、中央财政、省重点研发、省农业自主创新,省“六大高峰人才”等省级以上项目14项,已获国家发明专利授权28项(第一发明人14项),国家林业局植物新品种权2项,发表论文86篇(含SCI收录第一/通讯作者31篇),获教育部高等学校科技进步一等奖、国家林业局梁希林业科学技术二等奖、国家林草局梁希林业技术发明二等奖、江苏省科技进步三等奖、全国商业科技进步一等奖等奖项。
主讲本科生《生态学》和研究生《分子生态学》。
承担的主要课题(2018年以来):
1. 国家自然科学基金面上项目:基于异速生长理论的旱柳根系耐盐基因网络枢纽发掘(31971681),2020.01-2023.12,58万元,主持;
2. 中央财政林业改革发展资金项目:红叶珍贵苗木繁育核心技术集成示范与推广(苏[2021]TG03),2021.01-2023.12,60万元,主持;
3. 江苏省重点研发计划(现代农业)重点项目,基于耐盐、色叶基因检测聚合的紫薇新品种选育(BE2018326),2018.07-2021.06,150万元,主持;
4. 江苏林业科技创新与推广项目:典型常绿珍贵乡土树种的定向培育与节本化试验研究(LYKJ[2021]11),2021.07-2023.06,40万元,主持;
5. 江苏林业科技创新与推广项目:雄性窄冠速生乔木柳用材品种培育与栽培应用(LYKJ[2018]36),2018.10-2020.09,40万元,主持;
6. 江苏林业科技创新与推广项目:江苏沿海盐碱地固碳造林柳树品种选育与林菌增汇模式构建示范(LYKJ[2023]02),2023.09-2026.09,70万元,共同主持;
7. 江苏省农业科技自主创新资金项目:苏中沿海滩涂菌草资源复合利用与互作型林草立体种植技术创新(CX19(3121)),2019.07-2021.06,40万元,共同主持;
8. 南通市自然资源和规划局委托项目:南通市林木种质资源保护和利用规划,2020.12.24-2021.3.31,18.2万元,主持。
获奖情况:
1. 2014年教育部科技进步一等奖;
2. 2016年国家林业局梁希林业技术科技二等奖;
3. 2016年江苏省科技进步三等奖;
4. 2023年国家林草局梁希林业技术奖技术发明二等奖;
5. 2023年全国商业科技进步一等奖。
主要研究领域:
1. 园林植物抗逆分子调控机制与育种;
2. 林木生态碳汇提升技术研发。
第一发明人授权发明专利
1.一种刺孔抽真空诱导柳树染色体加倍的装置和方法(ZL202310187247.8)
2.一种秋水仙素变温诱导柳树染色体加倍的方法(ZL202210206498.1)
3.一种灌木柳促成开花的方法(ZL202010932305.1)
4.旱柳抗逆快速进化基因的发掘方法(ZL202111128157.9)
5.一种基于电阻值快速评价柳树品种耐盐性的方法(ZL202010815719.6)
6.耐淹柳树新品种快速育种方法(ZL202010495073.8)
7.旱柳耐盐枢纽基因的发掘方法(ZL201910893406.X)
8.基于基因检测聚合选育耐盐色叶紫薇的方法(ZL201810471345.3)
9.柳树沿海滩涂耐盐性早期鉴定方法(ZL201210160422.6)
10.一种保护地多功能用植物耐盐性测定盐池(ZL201510087647.7)
11.江苏沿海滩涂降盐的工程综合改良法与景观模式(ZL201510476565.1)
12.沿海盐碱地柳树直插成苗方法(ZL201110037206.8)
13.促进柳树杂交的方法(ZL201110135595.8)
14.挪威枫种子发芽方法(ZL200910026689.4)
代表性论文(2020年以来):
1. Wei H, Chen J, Zhang X, et al. Characterization, expression pattern, and function analysis of gibberellin oxidases in Salix matsudana[J]. International Journal of Biological Macromolecules, 2024: 131095.
2. Yu C, Liu G, Qin J, et al. Genomic and transcriptomic studies on flavonoid biosynthesis in Lagerstroemia indica[J]. BMC Plant Biology, 2024, 24(1): 171.
3. Wei H, Chen J, Zhang X, et al. Comprehensive analysis of annexin gene family and its expression in response to branching architecture and salt stress in crape myrtle[J]. BMC Plant Biology, 2024, 24(1): 78.
4. Wei H, Chen J, Lu Z, et al. Crape myrtle LiGAoxs displaying activities of gibberellin oxidases respond to branching architecture[J]. Plant Physiology and Biochemistry, 2024, 212: 108738.
5. Wei H, Chen J, Lu Z, et al. Transcriptome analysis reveals critical genes and pathways of regulating the branching architecture of Lagerstroemia Indica in response to gravity signal[J]. Scientia Horticulturae, 2024, 331: 113163.
6. Chen, Y, Huang, Q, Hua X, et al. A homolog of AtCBFs, SmDREB A1-4, positively regulates salt stress tolerance in Arabidopsis thaliana and Salix matsudana[J]. Plant Physiology and Biochemistry,2023, 202: 107963.
7. Yang, J, Tang Z, Yang W, et al. Genome-wide characterization and identification of Trihelix transcription factors and expression profiling in response to abiotic stresses in Chinese Willow (Salix matsudana Koidz)[J].. Frontiers in Plant Science,2023, 14: 1125519.
8. Wei H, Liu G, Qin J, et al. Genome-wide characterization, chromosome localization, and expression profile analysis of poplar non-specific lipid transfer proteins[J]. International Journal of Biological Macromolecules, 2023, 231: 123226.
9. Huang Q, Hua X, Zhang Q, et al. Identification and functional verification of salt tolerance hub genes in Salix matsudana based on QTL and transcriptome analysis[J]. Environmental and Experimental Botany, 2023, 215: 105470.
10. Liu G, Wang Y, Lian B, et al. Molecular responses to salinity stress in Salix matsudana (Koidz) females and males[J]. Frontiers in Plant Science, 2023, 14: 1122197.
11. Wei H, Movahedi A, Chen J, et al. PtAPX9-PtLTPG14 modulates the AsA-GSH cycle for lipid mechanisms in poplar[J]. Industrial Crops and Products, 2023, 204: 117370.
12. Wei H, Movahedi A, Liu G, et al. Poplar glycosylphosphatidylinositol-anchored lipid transfer proteins respond to osmotic stress by regulating fatty acid biosynthesis[J]. Industrial Crops and Products, 2022, 179: 114683.
13. Wei H, Movahedi A, Liu G, et al. Characteristics, expression profile, and function of non-specific lipid transfer proteins of Populus trichocarpa[J]. International Journal of Biological Macromolecules, 2022, 202: 468-481.
14. Wei H, Movahedi A, Yang J, et al. Characteristics and molecular identification of glyceraldehyde-3-phosphate dehydrogenases in poplar[J]. International Journal of Biological Macromolecules, 2022, 219: 185-198.
15. Chen Y, Dai Y, Li Y, et al. Overexpression of the Salix matsudanaSmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5[J]. BMC Plant Biology, 2022, 22(1): 1-17.
16. Wei H, Movahedi A, Zhang Y, et al. Long-chain acyl-CoA synthetases promote poplar resistance to abiotic stress by regulating long-chain fatty acid biosynthesis[J]. International Journal of Molecular Sciences, 2022, 23(15): 8401.
17. Wei H, Movahedi A, Xu S, et al. Genome-wide characterization and expression analysis of fatty acid desaturase gene family in poplar[J]. International Journal of Molecular Sciences, 2022, 23(19): 11109.
18. Zhong F, Fan X, Ji W, et alSoil fungal community composition and diversity of culturable endophytic fungi from plant roots in the reclaimed area of the eastern coast of China[J]. Journal of Fungi, 2022, 8(2): 124.
19. Yu C, Ke Y, Qin J, et al. Genome-Wide Identification of CBL-Interacting Protein Kinase (CIPK) Gene Family Reveals Members Participating in Abiotic Stress in the Ornamental Woody Plant Lagerstroemia indica[J]. Frontiers in Plant Science, 2022, 13:942217.
20. Wei H, Movahedi A, Liu G, et al. Comprehensive analysis of carotenoid cleavage dioxygenases gene family and its expression in response to abiotic stress in poplar[J]. International Journal of Molecular Sciences, 2022, 23(3): 1418.
21. Wei H, Movahedi A, Liu G, et al. Genome-wide characterization and abiotic stresses expression analysis of annexin family genes in poplar[J]. International Journal of Molecular Sciences, 2022, 23(1): 515.
22. Liu G, Li Y, Gao J, et al. Detecting the different responses of roots and shoots to gravity in Salix matsudana (Koidz)[J]. Forests, 2021, 12(12): 1715.
23. Zhang J, Yuan H, Li Y, et al. Genome sequencing and phylogenetic analysis of allotetraploid Salix matsudana Koidz[J]. Horticulture Research, 2020, 7(1):11.